nmrpflash/ethsock.c
2024-08-04 12:43:54 +02:00

1472 lines
30 KiB
C

/**
* nmrpflash - Netgear Unbrick Utility
* Copyright (C) 2016 Joseph Lehner <joseph.c.lehner@gmail.com>
*
* nmrpflash is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* nmrpflash is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with nmrpflash. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <sys/types.h>
#include <stdbool.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include "nmrpd.h"
#if defined(NMRPFLASH_WINDOWS)
# include <iphlpapi.h>
# define NMRPFLASH_PRETTY_FMT "%ls"
# ifndef ERROR_NDIS_MEDIA_DISCONNECTED
# define ERROR_NDIS_MEDIA_DISCONNECTED 0x8034001f
# endif
# define WPCAP
# include <pcap.h>
#else
# include <sys/ioctl.h>
# include <ifaddrs.h>
# include <unistd.h>
# include <net/if.h>
# include <pcap.h>
# if defined(NMRPFLASH_LINUX)
# define NMRPFLASH_AF_PACKET AF_PACKET
# include <linux/if_packet.h>
# include <netlink/route/addr.h>
# include <netlink/route/neighbour.h>
# else
# define NMRPFLASH_AF_PACKET AF_LINK
# include <net/if_types.h>
# include <net/if_media.h>
# endif
#endif
#ifdef NMRPFLASH_OSX
#include <CoreFoundation/CoreFoundation.h>
#define NMRPFLASH_PRETTY_FMT "%s"
#endif
struct ethsock
{
const char *intf;
pcap_t *pcap;
#ifndef NMRPFLASH_WINDOWS
int fd;
#ifdef NMRPFLASH_LINUX
bool stp;
// managed by NetworkManager
bool nm_managed;
#endif
#else
HANDLE handle;
DWORD index;
#endif
unsigned timeout;
uint8_t hwaddr[6];
};
struct ethsock_arp_undo
{
uint32_t ipaddr;
uint8_t hwaddr[6];
};
struct ethsock_ip_undo
{
uint32_t ip[2];
};
static int x_pcap_findalldevs(pcap_if_t **devs)
{
char errbuf[PCAP_ERRBUF_SIZE];
if (pcap_findalldevs(devs, errbuf) != 0) {
fprintf(stderr, "%s.\n", errbuf);
return -1;
}
return 0;
}
static bool intf_get_pcap_flags(const char *intf, bpf_u_int32 *flags)
{
pcap_if_t *devs, *dev;
if (x_pcap_findalldevs(&devs) == 0) {
for (dev = devs; dev; dev = dev->next) {
if (!strcmp(intf, dev->name)) {
*flags = dev->flags;
break;
}
}
pcap_freealldevs(devs);
return dev != NULL;
}
return false;
}
#ifndef NMRPFLASH_WINDOWS
static int systemf(const char *fmt, ...)
{
char cmd[1024];
int ret;
va_list va;
va_start(va, fmt);
ret = vsnprintf(cmd, sizeof(cmd) - 1, fmt, va);
if (ret >= sizeof(cmd) - 1) {
return -1;
}
ret = system(cmd);
va_end(va);
return ret;
}
#endif
#ifndef NMRPFLASH_WINDOWS
static inline bool sockaddr_get_hwaddr(struct sockaddr *sa, uint8_t *hwaddr)
{
void *src;
if (!sa || sa->sa_family != NMRPFLASH_AF_PACKET) {
return false;
}
#ifndef NMRPFLASH_LINUX
if (((struct sockaddr_dl*)sa)->sdl_type != IFT_ETHER) {
return false;
}
src = LLADDR((struct sockaddr_dl*)sa);
#else
src = ((struct sockaddr_ll*)sa)->sll_addr;
#endif
memcpy(hwaddr, src, 6);
return true;
}
#ifdef NMRPFLASH_LINUX
static int intf_sys_open(const char* intf, const char* file)
{
char name[256];
snprintf(name, sizeof(name), "/sys/class/net/%s/%s", intf, file);
return open(name, O_RDWR, 0644);
}
static bool intf_sys_read(const char* intf, const char* file, bool def)
{
char c;
int fd;
fd = intf_sys_open(intf, file);
if (fd == -1) {
return def;
}
c = 0;
read(fd, &c, 1);
close(fd);
return c ? (c == '1') : def;
}
static bool intf_stp_enable(const char *intf, bool enabled)
{
int fd;
ssize_t n;
fd = intf_sys_open(intf, "bridge/stp_state");
if (fd == -1) {
return false;
}
n = write(fd, enabled ? "1\n" : "0\n", 2);
close(fd);
return n == 2;
}
static struct nl_addr *build_ip(uint32_t ip)
{
struct nl_addr *na = nl_addr_build(AF_INET, &ip, 4);
if (!na) {
xperror("nl_addr_build");
}
return na;
}
static struct nl_sock *xnl_socket_route()
{
int err;
struct nl_sock *sk = nl_socket_alloc();
if (sk) {
if (!(err = nl_connect(sk, NETLINK_ROUTE))) {
return sk;
}
nl_socket_free(sk);
nl_perror(err, "nl_connect");
} else {
xperror("nl_socket_alloc");
}
return NULL;
}
static bool intf_add_del_ip(const char *intf, uint32_t ipaddr, uint32_t ipmask, bool add)
{
struct rtnl_addr *ra = NULL;
struct nl_sock *sk = NULL;
struct nl_addr *laddr = NULL;
struct nl_addr *bcast = NULL;
int err = 1;
if (!(sk = xnl_socket_route())) {
return false;
}
if (!(laddr = build_ip(ipaddr))) {
goto out;
}
nl_addr_set_prefixlen(laddr, bitcount(ipmask));
if (!(bcast = build_ip((ipaddr & ipmask) | ~ipmask))) {
goto out;
}
if (!(ra = rtnl_addr_alloc())) {
xperror("rtnl_addr_alloc");
goto out;
}
rtnl_addr_set_ifindex(ra, if_nametoindex(intf));
rtnl_addr_set_local(ra, laddr);
rtnl_addr_set_broadcast(ra, bcast);
if ((err = (add ? rtnl_addr_add(sk, ra, 0) : rtnl_addr_delete(sk, ra, 0))) < 0) {
if (add && err == -NLE_EXIST) {
err = 0;
} else if (add || verbosity > 1) {
nl_perror(err, add ? "rtnl_addr_add" : "rtnl_addr_delete");
}
}
out:
rtnl_addr_put(ra);
nl_addr_put(laddr);
nl_addr_put(bcast);
nl_socket_free(sk);
return !err;
}
static bool intf_add_del_arp(const char *intf, uint32_t ipaddr, uint8_t *hwaddr, bool add)
{
#if 0
struct arpreq arp;
memset(&arp, 0, sizeof(arp));
arp.arp_ha.sa_family = ARPHRD_ETHER;
memcpy(&arp.arp_ha.sa_data, hwaddr, 6);
arp.arp_flags = ATF_PERM | ATF_COM;
struct sockaddr_in *in = (struct sockaddr_in*)&req.arp_pa;
in->sin_addr.s_addr = htonl(ipaddr);
in->sin_family = AF_INET;
int fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) {
perror("socket");
return false;
}
bool ret = true;
if (ioctl(fd, add ? SIOCSARP : SIOCDARP, &req) < 0) {
perror(add ? "ioctl(SIOCSARP)" : "ioctl(SIOCDARP");
ret = false;
}
close(fd);
return ret;
#else
struct nl_sock *sk;
struct rtnl_neigh *neigh;
struct nl_addr *mac, *ip;
int err = 1;
sk = NULL;
neigh = NULL;
mac = ip = NULL;
if (!(sk = xnl_socket_route())) {
goto out;
}
if (!(neigh = rtnl_neigh_alloc())) {
xperror("rtnl_neigh_alloc");
goto out;
}
if (!(mac = nl_addr_build(AF_PACKET, hwaddr, 6))) {
xperror("nl_addr_build");
goto out;
}
if (!(ip = nl_addr_build(AF_INET, &ipaddr, 4))) {
xperror("nl_addr_build");
goto out;
}
rtnl_neigh_set_ifindex(neigh, if_nametoindex(intf));
rtnl_neigh_set_dst(neigh, ip);
err = rtnl_neigh_delete(sk, neigh, 0);
if (add) {
rtnl_neigh_set_lladdr(neigh, mac);
rtnl_neigh_set_state(neigh, NUD_PERMANENT);
err = rtnl_neigh_add(sk, neigh, NLM_F_CREATE);
}
if (err && add) {
nl_perror(err, "rtnl_neigh_add");
}
out:
nl_addr_put(ip);
nl_addr_put(mac);
rtnl_neigh_put(neigh);
nl_socket_free(sk);
return !err;
#endif
}
#endif
static bool intf_get_hwaddr_and_bridge(const char *intf, uint8_t *hwaddr, bool *bridge)
{
struct ifaddrs *ifas, *ifa;
bool found;
if (getifaddrs(&ifas) != 0) {
xperror("getifaddrs");
return false;
}
found = false;
if (bridge) {
*bridge = false;
}
for (ifa = ifas; ifa; ifa = ifa->ifa_next) {
if (!strcmp(ifa->ifa_name, intf)) {
if (sockaddr_get_hwaddr(ifa->ifa_addr, hwaddr)) {
#ifdef NMRPFLASH_BSD
if (bridge) {
*bridge = ((struct if_data*) ifa->ifa_data)->ifi_type == IFT_BRIDGE;
}
#endif
found = true;
break;
}
}
}
freeifaddrs(ifas);
return found;
}
#else
void win_perror2(const char *msg, DWORD err)
{
char *buf = NULL;
FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPTSTR)&buf, 0, NULL);
if (buf) {
/* FormatMessageA terminates buf with CRLF! */
fprintf(stderr, "%s: %s", msg, buf);
LocalFree(buf);
} else {
fprintf(stderr, "%s: error %d\n", msg, (int)err);
}
}
static bool intf_get_if_row(NET_IFINDEX index, MIB_IF_ROW2* row)
{
DWORD err;
memset(row, 0, sizeof(*row));
row->InterfaceIndex = index;
err = GetIfEntry2(row);
if (err != NO_ERROR) {
if (verbosity > 1) {
win_perror2("GetIfEntry2", err);
}
return false;
}
return true;
}
static bool intf_get_hwaddr_and_index(const char *intf, uint8_t *hwaddr, DWORD *index)
{
PIP_ADAPTER_ADDRESSES adapters, adapter;
ULONG ret, flags, bufLen;
bool found = false;
flags = GAA_FLAG_INCLUDE_ALL_INTERFACES;
bufLen = 0;
ret = GetAdaptersAddresses(AF_UNSPEC, flags, NULL, NULL, &bufLen);
if (ret != ERROR_BUFFER_OVERFLOW) {
win_perror2("GetAdaptersAddresses", ret);
return false;
}
bufLen *= 2;
adapters = malloc(bufLen);
if (!adapters) {
xperror("malloc");
return false;
}
ret = GetAdaptersAddresses(AF_UNSPEC, flags, NULL, adapters, &bufLen);
if (ret == NO_ERROR) {
for (adapter = adapters; adapter; adapter = adapter->Next) {
if (verbosity > 2) {
printf(" %s: Type=%lu, Name=%ls\n", adapter->AdapterName, adapter->IfType, adapter->FriendlyName);
}
if (adapter->IfType != IF_TYPE_ETHERNET_CSMACD && adapter->IfType != IF_TYPE_IEEE80211) {
continue;
}
/* Interface names from WinPcap are "\Device\NPF_{GUID}", while
* AdapterName from GetAdaptersAddresses is just "{GUID}".*/
if (strstr(intf, adapter->AdapterName)) {
if (adapter->PhysicalAddressLength == 6) {
memcpy(hwaddr, adapter->PhysicalAddress, 6);
if (index) {
*index = adapter->IfIndex;
}
found = true;
break;
}
}
}
} else {
win_perror2("GetAdaptersAddresses", ret);
}
free(adapters);
return found;
}
static const char *intf_name_to_wpcap(const char *intf)
{
static char buf[128];
if (intf[0] == '\\') {
return intf;
}
do {
NET_IFINDEX index;
DWORD err;
NET_LUID luid;
GUID guid;
if (sscanf(intf, "net%lu", &index) != 1) {
index = if_nametoindex(intf);
if (!index) {
break;
}
}
err = ConvertInterfaceIndexToLuid(index, &luid);
if (err != NO_ERROR) {
if (verbosity) {
win_perror2("ConvertInterfaceIndexToLuid", err);
}
break;
}
err = ConvertInterfaceLuidToGuid(&luid, &guid);
if (err != NO_ERROR) {
if (verbosity) {
win_perror2("ConvertInterfaceLuidToGuid", err);
}
break;
}
snprintf(buf, sizeof(buf),
"\\Device\\NPF_{%08lX-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X}",
guid.Data1, guid.Data2, guid.Data3,
guid.Data4[0], guid.Data4[1], guid.Data4[2],
guid.Data4[3], guid.Data4[4], guid.Data4[5],
guid.Data4[6], guid.Data4[7]);
return buf;
} while (false);
fprintf(stderr, "Invalid interface name.\n");
return NULL;
}
NET_IFINDEX intf_get_index(const char* intf)
{
const char* p;
GUID guid;
NET_LUID luid;
DWORD err;
NET_IFINDEX ret;
int n;
p = strstr(intf, "NPF_{");
if (!p) {
return 0;
}
sscanf(p + 5,
"%08lX-%04hX-%04hX-%02hhX%02hhX-%02hhX%02hhX%02hhX%02hhX%02hhX%02hhX%n",
&guid.Data1, &guid.Data2, &guid.Data3,
&guid.Data4[0], &guid.Data4[1], &guid.Data4[2],
&guid.Data4[3], &guid.Data4[4], &guid.Data4[5],
&guid.Data4[6], &guid.Data4[7], &n);
if (n != 36) {
return 0;
}
err = ConvertInterfaceGuidToLuid(&guid, &luid);
if (err) {
win_perror2("ConvertInterfaceGuidToLuid", err);
return 0;
}
err = ConvertInterfaceLuidToIndex(&luid, &ret);
if (err) {
win_perror2("ConvertInterfaceLuidToIndex", err);
return 0;
}
return ret;
}
#endif
#ifdef NMRPFLASH_OSX
void cf_perror(const char* function)
{
if (verbosity > 1) {
fprintf(stderr, "Warning: %s failed\n", function);
}
}
CFStringRef to_cfstring(const char* str)
{
CFStringRef ret = CFStringCreateWithFileSystemRepresentation(
kCFAllocatorDefault, str);
if (!ret) {
cf_perror("CFStringCreateWithFileSystemRepresentation");
}
return ret;
}
CFPropertyListRef plist_open(const char* filename)
{
CFURLRef url = NULL;
CFReadStreamRef stream = NULL;
CFPropertyListRef plist = NULL;
do {
url = CFURLCreateFromFileSystemRepresentation(
kCFAllocatorDefault, (const UInt8*)filename,
strlen(filename), false);
if (!url) {
cf_perror("CFURLCreateFromFileSystemRepresentation");
break;
}
stream = CFReadStreamCreateWithFile(kCFAllocatorDefault, url);
if (!stream) {
cf_perror("CFReadStreamCreateWithFile");
break;
}
if (!CFReadStreamOpen(stream)) {
cf_perror("CFReadStreamOpen");
break;
}
plist = CFPropertyListCreateWithStream(
kCFAllocatorDefault, stream, 0,
kCFPropertyListImmutable, NULL, NULL);
if (!plist) {
cf_perror("CFPropertyListCreateWithStream");
break;
}
} while (false);
if (url) {
CFRelease(url);
}
if (stream) {
CFReadStreamClose(stream);
CFRelease(stream);
}
return plist;
}
bool dict_get_value(CFDictionaryRef dict, const char* key, const void** value)
{
CFStringRef cfkey = to_cfstring(key);
if (!cfkey) {
return false;
}
Boolean status = CFDictionaryGetValueIfPresent(dict, cfkey, value);
CFRelease(cfkey);
return status;
}
char* dict_get_string(CFDictionaryRef dict, const char* key)
{
CFStringRef str;
if (!dict_get_value(dict, key, (const void**)&str)) {
return NULL;
}
CFIndex len = CFStringGetLength(str) + 1;
char* buf = (char*)malloc(len);
if (!buf) {
perror("malloc");
return NULL;
}
Boolean status = CFStringGetFileSystemRepresentation(
str, buf, len);
if (!status) {
cf_perror("CFStringGetFileSystemRepresentation");
free(buf);
return NULL;
}
return buf;
}
typedef struct {
const char* device;
char* pretty;
} find_pretty_name_ctx;
void find_pretty_name(const void* key, const void* value, void* context)
{
find_pretty_name_ctx* ctx = (find_pretty_name_ctx*)context;
if (ctx->pretty) {
return;
}
CFDictionaryRef dict;
if (!dict_get_value((CFDictionaryRef)value, "Interface", (const void**)&dict)) {
return;
}
char* device = dict_get_string(dict, "DeviceName");
if (!device) {
return;
}
if (!strcmp(ctx->device, device)) {
// there are two instances of UserDefinedName. The one in the "Interface" dict
// defines a base name, such as "Wi-Fi", whereas the one in the root dict
// might contain a trailing number (e.g. "Wi-Fi 2") to identify multiple
// interfaces with the same base name.
ctx->pretty = dict_get_string((CFDictionaryRef)value, "UserDefinedName");
if (!ctx->pretty) {
ctx->pretty = dict_get_string(dict, "UserDefinedName");
}
}
free(device);
}
char* get_pretty_name(const char* interface)
{
CFPropertyListRef plist = plist_open("/Library/Preferences/SystemConfiguration/preferences.plist");
if (!plist) {
return NULL;
}
// what we're after is a CFDictionary element with the path
// /NetworkServices/<UUID>/Interface. The keys we're interested
// in are DeviceName (the network interface name), and UserDefinedName
// (the pretty name). Since we don't know the interface's UUID,
// we have to loop through all of them.
CFDictionaryRef dict;
find_pretty_name_ctx ctx = { interface, NULL };
if (dict_get_value((CFDictionaryRef)plist, "NetworkServices", (const void**)&dict)) {
CFDictionaryApplyFunction(dict, find_pretty_name, &ctx);
}
CFRelease(plist);
return ctx.pretty;
}
#endif
inline uint8_t *ethsock_get_hwaddr(struct ethsock *sock)
{
return sock->hwaddr;
}
bool ethsock_is_wifi(struct ethsock *sock)
{
#ifdef PCAP_IF_WIRELESS
bpf_u_int32 flags;
if (!intf_get_pcap_flags(sock->intf, &flags)) {
return false;
}
return flags & PCAP_IF_WIRELESS;
#else
#warning "libpcap version is < 1.9.0"
return false;
#endif
}
bool ethsock_is_unplugged(struct ethsock *sock)
{
#ifdef PCAP_IF_CONNECTION_STATUS
bpf_u_int32 flags;
if (!intf_get_pcap_flags(sock->intf, &flags)) {
return false;
}
return (flags & PCAP_IF_CONNECTION_STATUS)
== PCAP_IF_CONNECTION_STATUS_DISCONNECTED;
#else
#warning "libpcap version is < 1.9.0"
return false;
#endif
}
struct ethsock *ethsock_create(const char *intf, uint16_t protocol)
{
char buf[PCAP_ERRBUF_SIZE];
struct bpf_program fp;
struct ethsock *sock;
bool is_bridge = false;
int err;
#ifdef NMRPFLASH_WINDOWS
intf = intf_name_to_wpcap(intf);
if (!intf) {
return NULL;
}
#endif
sock = malloc(sizeof(struct ethsock));
if (!sock) {
xperror("malloc");
return NULL;
}
buf[0] = '\0';
sock->intf = intf;
sock->pcap = pcap_create(sock->intf, buf);
if (!sock->pcap) {
fprintf(stderr, "pcap_create: %s\n", buf);
}
if (*buf) {
fprintf(stderr, "Warning: %s.\n", buf);
}
err = pcap_set_snaplen(sock->pcap, BUFSIZ);
if (err) {
pcap_perror(sock->pcap, "pcap_set_snaplen");
goto cleanup;
}
err = pcap_set_promisc(sock->pcap, 1);
if (err) {
pcap_perror(sock->pcap, "pcap_set_promisc");
goto cleanup;
}
err = pcap_set_timeout(sock->pcap, 200);
if (err) {
pcap_perror(sock->pcap, "pcap_set_timeout");
goto cleanup;
}
err = pcap_set_immediate_mode(sock->pcap, 1);
if (err) {
pcap_perror(sock->pcap, "pcap_set_immediate_mode");
goto cleanup;
}
err = pcap_activate(sock->pcap);
if (err < 0) {
pcap_perror(sock->pcap, "pcap_activate");
goto cleanup;
} else if (err > 0) {
fprintf(stderr, "Warning: %s.\n", pcap_geterr(sock->pcap));
}
if (pcap_datalink(sock->pcap) != DLT_EN10MB) {
fprintf(stderr, "%s is not an ethernet interface.\n",
intf);
goto cleanup;
}
#ifndef NMRPFLASH_WINDOWS
err = !intf_get_hwaddr_and_bridge(intf, sock->hwaddr, &is_bridge);
#else
err = !intf_get_hwaddr_and_index(intf, sock->hwaddr, &sock->index);
#endif
if (err) {
fprintf(stderr, "Failed to get interface info.\n");
goto cleanup;
}
#ifdef NMRPFLASH_WINDOWS
err = pcap_setmintocopy(sock->pcap, 0);
if (err) {
pcap_perror(sock->pcap, "pcap_setmintocopy");
goto cleanup;
}
sock->handle = pcap_getevent(sock->pcap);
if (!sock->handle) {
pcap_perror(sock->pcap, "pcap_getevent");
goto cleanup;
}
#else
sock->fd = pcap_get_selectable_fd(sock->pcap);
if (sock->fd == -1) {
pcap_perror(sock->pcap, "pcap_get_selectable_fd");
goto cleanup;
}
#endif
snprintf(buf, sizeof(buf), "ether proto 0x%04x and not ether src %s",
protocol, mac_to_str(sock->hwaddr));
err = pcap_compile(sock->pcap, &fp, buf, 0, 0);
if (err) {
pcap_perror(sock->pcap, "pcap_compile");
goto cleanup;
}
err = pcap_setfilter(sock->pcap, &fp);
pcap_freecode(&fp);
if (err) {
pcap_perror(sock->pcap, "pcap_setfilter");
goto cleanup;
}
#ifdef NMRPFLASH_LINUX
// nmrpflash does not work on bridge interfaces with STP enabled
if ((sock->stp = intf_sys_read(intf, "bridge/stp_state", false))) {
if (!intf_stp_enable(intf, false)) {
fprintf(stderr, "Warning: failed to disable STP on %s.\n", intf);
}
}
err = system("nmcli -v > /dev/null");
if (!err) {
err = systemf("nmcli -f GENERAL.STATE device show %s | grep -q unmanaged", sock->intf);
if (!err) {
sock->nm_managed = false;
} else {
sock->nm_managed = true;
err = systemf("nmcli device set ifname %s managed no", sock->intf);
if (err) {
printf("Warning: failed to temporarily disable NetworkManager\n");
} else if (verbosity > 1) {
printf("Temporarily disabling NetworkManager on interface.\n");
}
}
} else {
sock->nm_managed = false;
}
#else
if (is_bridge) {
fprintf(stderr, "Warning: bridge interfaces are not fully "
"supported on this platform.\n");
}
#endif
return sock;
cleanup:
ethsock_close(sock);
return NULL;
}
ssize_t ethsock_recv(struct ethsock *sock, void *buf, size_t len)
{
struct pcap_pkthdr* hdr;
const u_char *capbuf;
int status;
#ifdef NMRPFLASH_WINDOWS
DWORD ret;
if (sock->timeout) {
ret = WaitForSingleObject(sock->handle, sock->timeout);
if (ret == WAIT_TIMEOUT) {
return 0;
} else if (ret != WAIT_OBJECT_0) {
win_perror2("WaitForSingleObject", ret);
return -1;
}
}
#else
if (sock->timeout) {
status = select_fd(sock->fd, sock->timeout);
if (status < 0) {
return -1;
} else if (status == 0) {
return 0;
}
}
#endif
status = pcap_next_ex(sock->pcap, &hdr, &capbuf);
switch (status) {
case 1:
memcpy(buf, capbuf, MIN(len, hdr->caplen));
return hdr->caplen;
case 0:
return 0;
case -1:
pcap_perror(sock->pcap, "pcap_next_ex");
return -1;
default:
fprintf(stderr, "pcap_next_ex: returned %d.\n", status);
return -1;
}
}
int ethsock_send(struct ethsock *sock, void *buf, size_t len)
{
if (pcap_inject(sock->pcap, buf, len) != len) {
#ifdef NMRPFLASH_WINDOWS
// Npcap's pcap_inject fails in many cases where neither
// Linux or macOS report an error. For now, we simply
// ignore errors if unplugged (and let all other through
// as well, just printing a debug line).
if (!ethsock_is_unplugged(sock) && verbosity > 1) {
pcap_perror(sock->pcap, "pcap_inject");
}
return 0;
#endif
pcap_perror(sock->pcap, "pcap_inject");
return -1;
}
return 0;
}
int ethsock_close(struct ethsock *sock)
{
if (!sock) {
return 0;
}
#ifdef NMRPFLASH_LINUX
if (sock->stp) {
intf_stp_enable(sock->intf, true);
}
if (sock->nm_managed) {
systemf("nmcli device set ifname %s managed yes", sock->intf);
}
#endif
if (sock->pcap) {
pcap_close(sock->pcap);
}
free(sock);
return 0;
}
inline int ethsock_set_timeout(struct ethsock *sock, unsigned msec)
{
sock->timeout = msec;
return 0;
}
unsigned ethsock_get_timeout(struct ethsock *sock)
{
return sock->timeout;
}
static int ethsock_arp(struct ethsock *sock, uint8_t *hwaddr, uint32_t ipaddr, struct ethsock_arp_undo **undo)
{
#if defined(NMRPFLASH_UNIX) && !defined(NMRPFLASH_LINUX)
struct in_addr addr = { .s_addr = ipaddr };
#elif defined(NMRPFLASH_WINDOWS)
DWORD err;
MIB_IPNETROW arp = {
.dwIndex = sock->index,
.dwPhysAddrLen = 6,
.dwAddr = ipaddr,
.dwType = MIB_IPNET_TYPE_STATIC
};
memcpy(arp.bPhysAddr, hwaddr, 6);
#endif
if (undo) {
#if defined(NMRPFLASH_LINUX)
if (!intf_add_del_arp(sock->intf, ipaddr, hwaddr, true)) {
return -1;
}
#elif defined(NMRPFLASH_WINDOWS)
err = CreateIpNetEntry(&arp);
if (err != NO_ERROR) {
win_perror2("CreateIpNetEntry", err);
return -1;
}
#else
if (systemf("arp -s %s %s", inet_ntoa(addr), mac_to_str(hwaddr)) != 0) {
return -1;
}
#endif
*undo = malloc(sizeof(struct ethsock_arp_undo));
if (!*undo) {
xperror("malloc");
return -1;
}
(*undo)->ipaddr = ipaddr;
memcpy((*undo)->hwaddr, hwaddr, 6);
} else {
#if defined(NMRPFLASH_LINUX)
if (!intf_add_del_arp(sock->intf, ipaddr, hwaddr, false)) {
return -1;
}
#elif defined(NMRPFLASH_WINDOWS)
return DeleteIpNetEntry(&arp) ? 0 : -1;
#else
return systemf("arp -d %s &> /dev/null", inet_ntoa(addr));
#endif
}
return 0;
}
int ethsock_arp_add(struct ethsock *sock, uint8_t *hwaddr, uint32_t ipaddr, struct ethsock_arp_undo **undo)
{
// remove any previous ARP entry
ethsock_arp(sock, hwaddr, ipaddr, NULL);
// add the new ARP entry
return undo ? ethsock_arp(sock, hwaddr, ipaddr, undo) : -1;
}
int ethsock_arp_del(struct ethsock *sock, struct ethsock_arp_undo **undo)
{
if (!*undo) {
return 0;
}
int ret = ethsock_arp(sock, (*undo)->hwaddr, (*undo)->ipaddr, NULL);
free(*undo);
*undo = NULL;
return ret;
}
static bool get_hwaddr_from_pcap(const pcap_if_t *dev, uint8_t *hwaddr)
{
#ifndef NMRPFLASH_WINDOWS
pcap_addr_t *addr;
int i;
for (addr = dev->addresses; addr; addr = addr->next) {
if (verbosity > 1) {
printf("%s: sa_family=%d, sa_data={ ", dev->name,
addr->addr->sa_family);
for (i = 0; i != sizeof(addr->addr->sa_data); ++i) {
printf("%02x ", addr->addr->sa_data[i] & 0xff);
}
printf("}\n");
}
if (sockaddr_get_hwaddr(addr->addr, hwaddr)) {
return true;
}
}
return intf_get_hwaddr_and_bridge(dev->name, hwaddr, NULL);
#else
return intf_get_hwaddr_and_index(dev->name, hwaddr, NULL);
#endif
}
int ethsock_list_all(void)
{
pcap_if_t *devs, *dev;
pcap_addr_t *addr;
uint8_t hwaddr[6];
unsigned dev_num = 0, dev_ok = 0;
#if defined(NMRPFLASH_WINDOWS)
wchar_t *pretty = NULL;
NET_IFINDEX index;
MIB_IF_ROW2 row;
#elif defined(NMRPFLASH_OSX)
char *pretty = NULL;
#endif
if (x_pcap_findalldevs(&devs) != 0) {
return -1;
}
memset(hwaddr, 0, 6);
for (dev = devs; dev; dev = dev->next, ++dev_num) {
if (dev->flags & PCAP_IF_LOOPBACK) {
if (verbosity) {
printf("%-15s (loopback device)\n", dev->name);
}
continue;
}
if (!get_hwaddr_from_pcap(dev, hwaddr)) {
if (verbosity) {
printf("%-15s (not an ethernet device)\n",
dev->name);
}
continue;
}
#ifndef NMRPFLASH_WINDOWS
printf("%-15s", dev->name);
# ifdef NMRPFLASH_OSX
pretty = get_pretty_name(dev->name);
# endif
#else
index = intf_get_index(dev->name);
if (intf_get_if_row(index, &row)) {
if (!row.InterfaceAndOperStatusFlags.HardwareInterface) {
if (verbosity) {
printf("%-15s (virtual interface)\n", dev->name);
}
continue;
}
if (row.Alias[0]) {
pretty = row.Alias;
}
}
if (!verbosity && index) {
printf("net%-2lu", index);
} else {
printf("%-15s", dev->name);
}
#endif
for (addr = dev->addresses; addr; addr = addr->next) {
if (addr->addr->sa_family == AF_INET) {
printf(" %-15s",
inet_ntoa(((struct sockaddr_in*)addr->addr)->sin_addr));
break;
}
}
if (!addr) {
printf(" %-15s", "0.0.0.0");
}
printf(" %s", mac_to_str(hwaddr));
#if defined(NMRPFLASH_WINDOWS) || defined(NMRPFLASH_OSX)
if (pretty) {
printf(" (" NMRPFLASH_PRETTY_FMT ")", pretty);
} else if (dev->description) {
printf(" (%s)", dev->description);
}
#endif
#ifdef NMRPFLASH_OSX
free(pretty);
#endif
printf("\n");
++dev_ok;
}
if (!dev_ok) {
printf("No suitable network interfaces found.\n");
}
return 0;
}
int ethsock_for_each_ip(struct ethsock *sock, ethsock_ip_callback_t callback,
void *arg)
{
struct ethsock_ip_callback_args args;
pcap_if_t *devs, *dev;
pcap_addr_t *addr;
int status = 0;
if (x_pcap_findalldevs(&devs) != 0) {
return -1;
}
args.arg = arg;
for (dev = devs; dev; dev = dev->next) {
if (strcmp(sock->intf, dev->name)) {
continue;
}
for (addr = dev->addresses; addr; addr = addr->next) {
if (addr->addr->sa_family == AF_INET) {
args.ipaddr = &((struct sockaddr_in*)addr->addr)->sin_addr;
args.ipmask = &((struct sockaddr_in*)addr->netmask)->sin_addr;
status = callback(&args);
if (status <= 0) {
break;
}
}
}
break;
}
pcap_freealldevs(devs);
return status <= 0 ? status : 0;
}
static inline void set_addr(void *p, uint32_t addr)
{
struct sockaddr_in* sin = p;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = addr;
#ifdef NMRPFLASH_BSD
((struct sockaddr*)p)->sa_len = sizeof(struct sockaddr_in);
#endif
}
#if !defined(NMRPFLASH_WINDOWS) && !defined(NMRPFLASH_LINUX)
static bool intf_up(int fd, const char *intf, bool up)
{
struct ifreq ifr;
strncpy(ifr.ifr_name, intf, IFNAMSIZ);
if (ioctl(fd, SIOCGIFFLAGS, &ifr) != 0) {
if (up) {
xperror("ioctl(SIOCGIFFLAGS)");
}
return false;
}
if (!up) {
ifr.ifr_flags &= ~(IFF_UP | IFF_RUNNING);
} else {
ifr.ifr_flags |= IFF_UP | IFF_RUNNING;
}
if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0) {
if (up) {
xperror("ioctl(SIOCSIFFLAGS)");
}
return false;
}
return true;
}
#endif
static int ethsock_ip_add_del(struct ethsock *sock, uint32_t ipaddr, uint32_t ipmask, struct ethsock_ip_undo **undo, bool add)
{
int ret, fd;
if (add && undo) {
if (!(*undo = malloc(sizeof(struct ethsock_ip_undo)))) {
xperror("malloc");
return -1;
}
(*undo)->ip[0] = ipaddr;
(*undo)->ip[1] = ipmask;
} else if (!add && (!undo || !*undo)) {
return 0;
}
ret = -1;
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) {
sock_perror("socket");
goto out;
}
#ifndef NMRPFLASH_WINDOWS
#ifdef NMRPFLASH_LINUX
if (!intf_add_del_ip(sock->intf, (*undo)->ip[0], (*undo)->ip[1], add)) {
goto out;
}
#else // NMRPFLASH_OSX (or any other BSD)
struct ifaliasreq ifra;
memset(&ifra, 0, sizeof(ifra));
strncpy(ifra.ifra_name, sock->intf, IFNAMSIZ);
set_addr(&ifra.ifra_addr, ipaddr);
set_addr(&ifra.ifra_mask, ipmask);
//set_addr(&ifra.ifra_broadaddr, (ipaddr & ipmask) | ~ipmask);
if (ioctl(fd, add ? SIOCAIFADDR : SIOCDIFADDR, &ifra) != 0) {
if (add) {
xperror("ioctl(SIOCAIFADDR");
}
goto out;
}
if (add) {
(*undo)->ip[0] = ipaddr;
(*undo)->ip[1] = ipmask;
intf_up(fd, ifra.ifra_name, true);
}
#endif
#else // NMRPFLASH_WINDOWS
MIB_UNICASTIPADDRESS_ROW row;
DWORD err;
int i;
memset(&row, 0, sizeof(row));
row.InterfaceIndex = sock->index;
set_addr(&row.Address.Ipv4, ipaddr);
row.Address.si_family = AF_INET;
if (add) {
row.PrefixOrigin = IpPrefixOriginManual;
row.SuffixOrigin = IpPrefixOriginManual;
row.OnLinkPrefixLength = bitcount(ipmask);
row.SkipAsSource = false;
row.PreferredLifetime = 0xffffffff;
row.ValidLifetime = 0xffffffff;
}
if (add) {
err = CreateUnicastIpAddressEntry(&row);
if (err != NO_ERROR && err != ERROR_OBJECT_ALREADY_EXISTS) {
win_perror2("CreateUnicastIpAddressEntry", err);
goto out;
}
if (err != ERROR_OBJECT_ALREADY_EXISTS) {
/* Wait until the new IP has actually been added */
for (i = 0; i < 20; ++i) {
err = GetUnicastIpAddressEntry(&row);
if (err != NO_ERROR) {
win_perror2("GetUnicastIpAddressEntry", err);
goto out;
}
if (row.DadState == IpDadStateTentative) {
Sleep(500);
} else {
break;
}
}
if (row.DadState == IpDadStateDeprecated) {
fprintf(stderr, "Warning: IP address marked as deprecated.\n");
} else if (row.DadState == IpDadStateTentative) {
fprintf(stderr, "Warning: IP address marked as tentative.\n");
} else if (row.DadState != IpDadStatePreferred) {
fprintf(stderr, "Failed to add IP address (state=%d).\n", row.DadState);
goto out;
}
}
} else {
err = DeleteUnicastIpAddressEntry(&row);
if (err != NO_ERROR) {
win_perror2("DeleteUnicastIpAddressEntry", err);
goto out;
}
}
#endif
ret = 0;
out:
#ifndef NMRPFLASH_WINDOWS
close(fd);
#else
closesocket(fd);
#endif
if (ret != 0 && undo) {
free(*undo);
*undo = NULL;
}
return ret;
}
int ethsock_ip_add(struct ethsock *sock, uint32_t ipaddr, uint32_t ipmask, struct ethsock_ip_undo **undo)
{
return ethsock_ip_add_del(sock, ipaddr, ipmask, undo, true);
}
int ethsock_ip_del(struct ethsock *sock, struct ethsock_ip_undo **undo)
{
if (!undo || !*undo) {
return 0;
}
int ret;
if ((*undo)->ip[0] != INADDR_NONE) {
ret = ethsock_ip_add_del(sock, (*undo)->ip[0], (*undo)->ip[1], undo, false);
} else {
ret = 0;
}
free(*undo);
*undo = NULL;
return ret;
}