swayfx/sway/tree/arrange.c
Pedro Côrte-Real d0233af3b3 Rework gaps code to be simpler and correct
Instead of tracking gaps per child apply gaps in two logical places:

1. In tiled containers use the layout code to add the gaps between
windows. This is much simpler and guarantees that the sizing of children
is correct.
2. In the workspace itself apply all the gaps around the edge. Here
we're in the correct position to size inner and outer gaps correctly and
decide on smart gaps in a single location.

Fixes #4296
2019-07-15 23:46:27 -04:00

360 lines
10 KiB
C

#define _POSIX_C_SOURCE 200809L
#include <ctype.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <wlr/types/wlr_output.h>
#include <wlr/types/wlr_output_layout.h>
#include "sway/tree/arrange.h"
#include "sway/tree/container.h"
#include "sway/output.h"
#include "sway/tree/workspace.h"
#include "sway/tree/view.h"
#include "list.h"
#include "log.h"
static void apply_horiz_layout(list_t *children, struct wlr_box *parent) {
if (!children->length) {
return;
}
// Count the number of new windows we are resizing, and how much space
// is currently occupied
int new_children = 0;
double current_width_fraction = 0;
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
current_width_fraction += child->width_fraction;
if (child->width_fraction <= 0) {
new_children += 1;
}
}
// Calculate each height fraction
double total_width_fraction = 0;
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
if (child->width_fraction <= 0) {
if (current_width_fraction <= 0) {
child->width_fraction = 1.0;
} else if (children->length > new_children) {
child->width_fraction = current_width_fraction /
(children->length - new_children);
} else {
child->width_fraction = current_width_fraction;
}
}
total_width_fraction += child->width_fraction;
}
// Normalize width fractions so the sum is 1.0
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
child->width_fraction /= total_width_fraction;
}
// Calculate gap size
double inner_gap = 0;
struct sway_container *child = children->items[0];
struct sway_workspace *ws = child->workspace;
if (ws) {
inner_gap = ws->gaps_inner;
}
// Descendants of tabbed/stacked containers don't have gaps
struct sway_container *temp = child;
while (temp) {
enum sway_container_layout layout = container_parent_layout(temp);
if (layout == L_TABBED || layout == L_STACKED) {
inner_gap = 0;
}
temp = temp->parent;
}
double child_total_width = parent->width - inner_gap * (children->length - 1);
// Resize windows
sway_log(SWAY_DEBUG, "Arranging %p horizontally", parent);
double child_x = parent->x;
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
child->x = child_x;
child->y = parent->y;
child->width = floor(child->width_fraction * child_total_width);
child->height = parent->height;
child_x += child->width + inner_gap;
// Make last child use remaining width of parent
if (i == children->length - 1) {
child->width = parent->x + parent->width - child->x;
}
}
}
static void apply_vert_layout(list_t *children, struct wlr_box *parent) {
if (!children->length) {
return;
}
// Count the number of new windows we are resizing, and how much space
// is currently occupied
int new_children = 0;
double current_height_fraction = 0;
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
current_height_fraction += child->height_fraction;
if (child->height_fraction <= 0) {
new_children += 1;
}
}
// Calculate each height fraction
double total_height_fraction = 0;
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
if (child->height_fraction <= 0) {
if (current_height_fraction <= 0) {
child->height_fraction = 1.0;
} else if (children->length > new_children) {
child->height_fraction = current_height_fraction /
(children->length - new_children);
} else {
child->height_fraction = current_height_fraction;
}
}
total_height_fraction += child->height_fraction;
}
// Normalize height fractions so the sum is 1.0
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
child->height_fraction /= total_height_fraction;
}
// Calculate gap size
double inner_gap = 0;
struct sway_container *child = children->items[0];
struct sway_workspace *ws = child->workspace;
if (ws) {
inner_gap = ws->gaps_inner;
}
// Descendants of tabbed/stacked containers don't have gaps
struct sway_container *temp = child;
while (temp) {
enum sway_container_layout layout = container_parent_layout(temp);
if (layout == L_TABBED || layout == L_STACKED) {
inner_gap = 0;
}
temp = temp->parent;
}
double child_total_height = parent->height - inner_gap * (children->length - 1);
// Resize windows
sway_log(SWAY_DEBUG, "Arranging %p vertically", parent);
double child_y = parent->y;
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
child->x = parent->x;
child->y = child_y;
child->width = parent->width;
child->height = floor(child->height_fraction * child_total_height);
child_y += child->height + inner_gap;
// Make last child use remaining height of parent
if (i == children->length - 1) {
child->height = parent->y + parent->height - child->y;
}
}
}
static void apply_tabbed_layout(list_t *children, struct wlr_box *parent) {
if (!children->length) {
return;
}
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
int parent_offset = child->view ? 0 : container_titlebar_height();
child->x = parent->x;
child->y = parent->y + parent_offset;
child->width = parent->width;
child->height = parent->height - parent_offset;
}
}
static void apply_stacked_layout(list_t *children, struct wlr_box *parent) {
if (!children->length) {
return;
}
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
int parent_offset = child->view ? 0 :
container_titlebar_height() * children->length;
child->x = parent->x;
child->y = parent->y + parent_offset;
child->width = parent->width;
child->height = parent->height - parent_offset;
}
}
static void arrange_floating(list_t *floating) {
for (int i = 0; i < floating->length; ++i) {
struct sway_container *floater = floating->items[i];
arrange_container(floater);
}
}
static void arrange_children(list_t *children,
enum sway_container_layout layout, struct wlr_box *parent) {
// Calculate x, y, width and height of children
switch (layout) {
case L_HORIZ:
apply_horiz_layout(children, parent);
break;
case L_VERT:
apply_vert_layout(children, parent);
break;
case L_TABBED:
apply_tabbed_layout(children, parent);
break;
case L_STACKED:
apply_stacked_layout(children, parent);
break;
case L_NONE:
apply_horiz_layout(children, parent);
break;
}
// Recurse into child containers
for (int i = 0; i < children->length; ++i) {
struct sway_container *child = children->items[i];
arrange_container(child);
}
}
void arrange_container(struct sway_container *container) {
if (config->reloading) {
return;
}
if (container->view) {
view_autoconfigure(container->view);
node_set_dirty(&container->node);
return;
}
struct wlr_box box;
container_get_box(container, &box);
arrange_children(container->children, container->layout, &box);
node_set_dirty(&container->node);
}
void arrange_workspace(struct sway_workspace *workspace) {
if (config->reloading) {
return;
}
if (!workspace->output) {
// Happens when there are no outputs connected
return;
}
struct sway_output *output = workspace->output;
struct wlr_box *area = &output->usable_area;
sway_log(SWAY_DEBUG, "Usable area for ws: %dx%d@%d,%d",
area->width, area->height, area->x, area->y);
bool first_arrange = workspace->width == 0 && workspace->height == 0;
double prev_x = workspace->x;
double prev_y = workspace->y;
workspace->width = area->width;
workspace->height = area->height;
workspace->x = output->lx + area->x;
workspace->y = output->ly + area->y;
// Adjust any floating containers
double diff_x = workspace->x - prev_x;
double diff_y = workspace->y - prev_y;
if (!first_arrange && (diff_x != 0 || diff_y != 0)) {
for (int i = 0; i < workspace->floating->length; ++i) {
struct sway_container *floater = workspace->floating->items[i];
container_floating_translate(floater, diff_x, diff_y);
double center_x = floater->x + floater->width / 2;
double center_y = floater->y + floater->height / 2;
struct wlr_box workspace_box;
workspace_get_box(workspace, &workspace_box);
if (!wlr_box_contains_point(&workspace_box, center_x, center_y)) {
container_floating_move_to_center(floater);
}
}
}
workspace_add_gaps(workspace);
node_set_dirty(&workspace->node);
sway_log(SWAY_DEBUG, "Arranging workspace '%s' at %f, %f", workspace->name,
workspace->x, workspace->y);
if (workspace->fullscreen) {
struct sway_container *fs = workspace->fullscreen;
fs->x = output->lx;
fs->y = output->ly;
fs->width = output->width;
fs->height = output->height;
arrange_container(fs);
} else {
struct wlr_box box;
workspace_get_box(workspace, &box);
arrange_children(workspace->tiling, workspace->layout, &box);
arrange_floating(workspace->floating);
}
}
void arrange_output(struct sway_output *output) {
if (config->reloading) {
return;
}
const struct wlr_box *output_box = wlr_output_layout_get_box(
root->output_layout, output->wlr_output);
output->lx = output_box->x;
output->ly = output_box->y;
output->width = output_box->width;
output->height = output_box->height;
for (int i = 0; i < output->workspaces->length; ++i) {
struct sway_workspace *workspace = output->workspaces->items[i];
arrange_workspace(workspace);
}
}
void arrange_root(void) {
if (config->reloading) {
return;
}
const struct wlr_box *layout_box =
wlr_output_layout_get_box(root->output_layout, NULL);
root->x = layout_box->x;
root->y = layout_box->y;
root->width = layout_box->width;
root->height = layout_box->height;
if (root->fullscreen_global) {
struct sway_container *fs = root->fullscreen_global;
fs->x = root->x;
fs->y = root->y;
fs->width = root->width;
fs->height = root->height;
arrange_container(fs);
} else {
for (int i = 0; i < root->outputs->length; ++i) {
struct sway_output *output = root->outputs->items[i];
arrange_output(output);
}
}
}
void arrange_node(struct sway_node *node) {
switch (node->type) {
case N_ROOT:
arrange_root();
break;
case N_OUTPUT:
arrange_output(node->sway_output);
break;
case N_WORKSPACE:
arrange_workspace(node->sway_workspace);
break;
case N_CONTAINER:
arrange_container(node->sway_container);
break;
}
}